Phenazine-1-carboxylic acid (PCA) from cold-adapted yeast *Glaciozyma antarctica* PI12

Andi Rifki Rosandya, Rozida Mohd. Khalidb

aMetabolomics Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43650 UKM Bangi, Selangor, Malaysia

ABSTRACT

A phenazine alkaloid, phenazine-1-carboxylic acid (PCA) was isolated from the ethyl acetate extract of cold-adapted yeast *Glaciozyma antarctica* PI12 (Kriegeriales). The compounds were isolated by several chromatography techniques i.e. radial chromatography (RC) and thin-layer chromatography (TLC). The chemical structure was elucidated by ultraviolet (UV), infrared (IR), nuclear magnetic resonance (1D and 2D NMR) spectroscopy and mass spectrometry.

Article history:

Received 25 Jun 2020
Revised 19 Jul 2020
Accepted 20 Jul 2020
Available online 31 August 2020

Keywords:

Psychrophilic yeast
Glaciozyma antarctica PI12
Phenazine alkaloid
PCA

*Corresponding author: andirifki914@gmail.com

DOI: 10.5614/crbb.2020.2.1/TLCY1641

e-ISSN 2686-1623/© 2020 Institut Teknologi Bandung. All rights reserved

1. Introduction

The search for secondary metabolites is still going on, particularly from the extremophilic microorganisms (Rosandy et al., 2019). The psychrophilic can be a good tool to explore the new bioactive metabolites of pharmaceutical importance (Archer et al., 2008) due to uniqueness of their habitat and changes in the environmental conditions (Morita 1975; De Maayer et al., 2014). Early studies regarding the chemical constituents of cold-adapted yeast *Glaciozyma antarctica* PI12 (Di Menna 1960; Fell et al., 1969; Donachie 1995; Turkiewicz et al., 2005; Connell et al., 2008; Turchetti et al., 2011) revealed the presence of a new diketopiperazine i.e. (-)-Glaciantarcin, together with five known diketopiperazine and two pyrimidine (Rosandy et al., 2017 & 2018; Alvi et al., 2017s).

This paper reported for the first time the isolation and detailed characterization of a PCA from yeast *G. antarctica* PI12

2. Materials and Methods

2.1. General

Thin-layer chromatography, aluminium sheets 20 × 20 cm of the silica gel 60 F254 of 0.25 mm thickness (art. no. 5554, MERCK) and Silica gel; Kieselgel 60 PF254 (art. no. 7749, Merck) (radial chromatography, Chromatotron-7924T-01 USA). The structure of the isolated compound was determined based on the spectral data recorded on UV-Vis (Perkin-Elmer Lambda 35, Waltham, MA, USA), FTIR (Perkin-Elmer USA) spectrophotometer and NMR 700 MHz cryo-probe (Bruker Germany). ESIMS was recorded by using Ultra performance liquid chromatography (UPLC–LCMS, WATER USA).

2.2. Biological materials, cultivation of yeast and isolation of compound

The procedures of cultivation of yeast *G. antarctica* PI12 and isolation of compound were described in Rosandy et al. (2017, 2018).

2.3. Preliminary phytochemical screening

The standard procedures of chemicals screening was described by Trease and Evans (Trease & Evans 1989).

2.3.1. Saponin

One milligram of the extract was diluted with 20 ml of distilled water and shaken in a graduated cylinder for 5 to 10 min. The formation of a foam layer indicates the presence of saponins.

2.3.2. Phenols

One milligram of the extract was diluted with 1 ml of distilled water in a test tube and 2 drops of Iron (III) chloride (FeCl$_3$) was added. Blue, green, red or purple colour is a positive test.
2.3.3. Glycosides

One milligram of the extract was taken in 1 ml of distilled water in a test tube and a drop of aqueous NaOH were added. A yellow colouration indicates the presence of glycosides.

2.3.4. Flavonoids

Two to five drops of concentrated HCl were added to 1 mg of the extract. A red colour indicates the presence of flavonoids.

2.3.5. Alkaloids

One to two millilitres of extract were taken in a test tube together with 0.2 mL dilute HCl and 1 ml of Meyer’s reagent. A yellowish colouration indicates alkaloid’s presence.

2.3.6. Tannins

Two to five millilitres of the extract were placed in a test tube together with 2 ml of 5% of FeCl₃ solution. A greenish-black precipitate indicates the presence of tannins.

2.3.7. Terpenoids

One millilitre of extract was added in a test tube containing 2 ml of CHCl₃. This is then followed by the addition of 1 to 3 ml H₂SO₄ which forms a layer. The reddish-brown colouration of the interface indicates terpenoids.

3. Results and discussion

The chemicals screening of the extract of G. antarctica PI12 showed the presence of saponin, phenol, glycoside alkaloid and terpenoid. Flavonoid and tannin were not found to be present in this yeast extract (Table 1).

Table 1. Results of chemical screening of G. antarctica PI12

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saponin</td>
<td>+</td>
</tr>
<tr>
<td>Phenol</td>
<td>+</td>
</tr>
<tr>
<td>Glycoside</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>-</td>
</tr>
<tr>
<td>Alkaloid</td>
<td>+</td>
</tr>
<tr>
<td>Tannin</td>
<td>-</td>
</tr>
<tr>
<td>Terpenoid</td>
<td>+</td>
</tr>
</tbody>
</table>

Two milligrams of the pure compound were isolated as yellow crystals with melting point 240 to 242°C. The molecular formula \(\text{C}_13\text{H}_8\text{N}_2\text{O}_2\text{Na} \) was identified using ESI-MS [M+Na]⁺ ion at m/z 247.0359 (Fig. 1).

The UV spectrum displays absorbance peaks at 256 and 368 nm indicating of the double bonds conjugated system in the molecule. The FT-IR spectral data (Fig. 2) exhibited strong absorption peaks at 1727 cm⁻¹ (carboxylic acid vibration), 1467 cm⁻¹ (aromatic C=C stretch), while 861 cm⁻¹ and 747 cm⁻¹ (C-H bending vibrations).

The presence of functional groups is supported by NMR data. The APT (Attached Proton Test) spectrum (Fig. 3) reveals that the compound contains 13 carbons consisting of seven methines and six quaternary carbons. The most highly deshielded signal at δC 165.9 (C11) integrating for one-carbon is attributed to a carboxylic acid. The highly shielded carbons at δC 135.1 (C2), 130.3 (C3), 137.5(C4), 130.1 (C6), 131.8 (C7), 133.2 (C8) and 128.0 (C9) represent the existence of two aromatic rings in the molecule. The other five carbons at δC 125.0 (C1), 144.1 (C4a), 140.1 (C5a), 139.9 (C9a) and 143.4 (C10a) are fused the aromatic ring. The DBE (Double Bond Equivalent) value of \(\text{C}_{13}\text{H}_8\text{N}_2\text{O}_2 \) is 11, indicating that the compound consists of eight double bonds (seven olefinic and one carbonyl) and three rings.
Meanwhile, seven proton signals consisting of seven protons aromatic appeared in the 1H-NMR spectrum (Fig. 4) as shown in Table 2. Three of the signals at δH 8.57 (d, 7) H2, 8.08 (t, 7) H3 and 9.02 (d, 7) H4 came from aromatic ring A, while the other four signals at δH 8.38 (d, 7) H6, 8.02 (d, 7) H7, 8.04 (d, 7) H8 and 8.32 (d, 7) H9 are fused in the aromatic ring C.

The structure is confirmed using 2D NMR. The HMBC experiment shows 2JCH couplings between proton methine olefinic H-2 at δH 8.57 (d, 7) with C-1 and C-3, while H-2 has 3JCH couplings with C-11, thus confirming the position of carboxylic acid (C-11).

The other two methines olefinic, H-4 has correlations with two quaternary carbons at C-4a and C-10a, while H-6 generates 2JCH couplings with C-5a and 3JCH couplings with C-9a. Correlation between H-7 and C-8 also appears in the HMBC spectrum. All correlations showed that the isolated compound is phenazine-1-carboxylic acid (PCA) (Abraham et al., 2015). This compound previously isolated from *Streptomyces antibioticus* strain Tu 2706 (Geiger et al., 1988), *Pseudomonas aeruginosa* (Jayatilake et al., 1996) and *Pseudomonas aeruginosa* UPM2 (Lee et al., 2018) and *Streptomyces kebangsaanensis* (Remali et al., 2019).

Table 2. NMR data of phenazine-1-carboxylic acid (PCA) (Abraham et al., 2015)

<table>
<thead>
<tr>
<th>δC (ppm)</th>
<th>δH (mult. J in Hz)</th>
<th>δH</th>
<th>HMBC (δH→13C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCA</td>
<td>*</td>
<td>PCA</td>
<td>*</td>
</tr>
<tr>
<td>1</td>
<td>125.0</td>
<td>124.9</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>135.1</td>
<td>135.1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>130.3</td>
<td>130.2</td>
<td>8.08 (t, J = 7) H1</td>
</tr>
<tr>
<td>4</td>
<td>137.5</td>
<td>137.4</td>
<td>9.02 (d, 7) H1</td>
</tr>
<tr>
<td>4a</td>
<td>144.1</td>
<td>144.1</td>
<td>-</td>
</tr>
<tr>
<td>5-N</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5a</td>
<td>140.1</td>
<td>140.1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>130.1</td>
<td>130.1</td>
<td>8.38 (d, 7) H1</td>
</tr>
<tr>
<td>7</td>
<td>131.8</td>
<td>131.7</td>
<td>8.02 (d, 7) H1</td>
</tr>
<tr>
<td>8</td>
<td>133.2</td>
<td>133.2</td>
<td>8.04 (d, 7) H1</td>
</tr>
<tr>
<td>9</td>
<td>128.0</td>
<td>127.9</td>
<td>8.32 (d, 7) H1</td>
</tr>
<tr>
<td>9a</td>
<td>139.9</td>
<td>139.8</td>
<td>-</td>
</tr>
<tr>
<td>10-N</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10a</td>
<td>143.4</td>
<td>143.4</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>165.9</td>
<td>165.9</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 5. (a) The structure of PCA and (b) correlation NMR; HMBC (→), COSY (—)

4. Conclusion

A phenazine alkaloid, PCA was isolated and reported for the first time from cold-adapted yeast *G. antarctica* PI12. This isolated compound was not subjected to further bioactivity studies due to insufficient amounts.

Acknowledgement

Authors would like to thank the School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM); Malaysia Genome Institute for providing research facilities and also would like to express our gratitude to the LPDP (Indonesia Endowment Fund for Education) and the Ministry of Science and Technology for financial support through research grants of 02-05-20-SF0007.

References

95

