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ABSTRACT   

The review addressed aspects of plant fertilisation and the phenomenon of genetic cross-
incompatibility in maize controlled by the Gametophyte1 locus. This phenomenon determines 
the failure to accomplish successful fertilisation and a full seed set when pollen grains carrying 
the ga1 allele pollinate female inflorescences carrying the Ga1-strong (Ga-1s) allele in the 
homozygous state (Ga1-s/Ga1-s). We divided the review work into several topics — first, the 
introduction of sexual plant reproduction. Second, pollen-pistil interactions in plants. Third, 
reproductive barriers during plant reproduction. Third, Incompatibility in plants. Fourth, fine 
mapping of the Ga1 locus in maize. Fifth, recent researches on Ga1-related cross-incompatibility 
in maize. 
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1. Introduction 

In plants, the new generation derives from the union of the 
male gametes, carried by the pollen grain and the egg cell in the 
embryo sac. The process begins with the deposition of the pollen 
grain onto the female stigmatic tissue. If a positive pollen-stigma 
interaction occurs, the pollen grain hydrates and germinates a 
pollen tube. During this germination process, the pollen tube tip 
grows to establish the directional growth, and pollen tube 
elongation proceeds very fast (Krichevsky et al., 2007). In general, 
plant pollination following the four steps: 1) pollen recognition by 
stigma; 2) pollen germination within the stigma; 3) pollen tube 
growth in the pistil until reach the ovule through the micropyle; 4) 
pollen tube of sperm in the embryo capsular release and double 
fertilisation. 

Female pistil provides guidance cues and essential nutrients to 
the appropriate pollen to support pollen tube growth but, at the 
same time, the pistil represents a physical barrier protecting the 
ovules from being fertilised by inappropriate pollen, especially 
pollen from other species. It is now clear that appropriate 
favourable interactions between the pollen tube and the female 
floral tissues need to be established for successful fertilisation to 
occur. In the past 20 years, a large number of gene products and 
chemical compounds involved in pollen tube growth and guidance 
have been identified in several model species (Higashiyama and 
Hamamura, 2008; Higashiyama, 2010; Lausser et al., 2010). 
However, the molecular still unknown. Mutant analysis and the 
detailed characterisation of their causal genes are crucial for the 

elucidation of this fundamental biological phenomenon. But not 
many mutants controlling pollen-pistil interaction well-known in 
crop species with the notable exception of those genes controlling 
self-incompatibility (Sanchez et al., 2004). 

In a male, pollen coming from the microsporogenesis before 
pollination. After meiosis, microsporocytes generate a tetrad of four 
haploid microspores encased in a callose wall. Afterwards, the 
callose wall disappears, the microspores grow, exine and the outer 
pollen wall synthesised. Second, the microspore undergoes 
asymmetrical division to produce one vegetative cell and two of the 
generative cells. At this stage, pollen grain secretes intine, the 
cellulosic and pectic pollen inner wall. In many other plant species, 
such as petunia and tomato, the second mitosis takes place only 
after the germination of the pollen tube (Bedinger, 1992). 

A large number of genes controlling pollen development has 
been identified in several plant species, mainly in maize, tobacco, 
and Arabidopsis (Xu et al., 2002; Engel et al., 2003; Honys and 
Twell, 2003). During microsporogenesis and pollen development, 
pollen encodes genes and stored as mRNA-protein complexes 
(mRNPs, messenger ribonucleoprotein particles) in mature pollen 
and their translation will postpone until pollen tube growth begins 
(Hafidh et al., 2011). Furthermore, pollen-specific genes encode for 
enzymes for cell wall metabolisms, such as pectate lyase, 
pectinesterase and cytoskeleton proteins, such as actin, profilin, and 
tubulin. An example of a late pollen gene in maize is ZmC5, a pectin 
methylesterase-like gene involved in pollen tube elongation 
(Wakeley et al., 1998). Another class of genes, called "early", is 
detectable soon after the tetrad stage and its expression declines 
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well before pollen maturity. In a higher plant, pollination and 
fertilisation involve complex physiological and biochemical 
networks. The molecular understanding during pollination process 
is well-described in model species, such as in Arabidopsis, Nicotiana 
(tobacco), Lilium (lily), and Brassica oleracea (broccoli) (Swanson 
et al., 2004). However, pollen-pistil interactions are still poorly 
characterised, and so it is essential to address the genetic and 
molecular mechanisms of the communication between pollen and 
pistil. 

2. Pollen-pistil interactions in plants 

The critical point in pollination is how male and female organs 
communicate with each other. Communication between male and 
female gametophytes is an intricate process involving physical, 
chemical, cellular and molecular mechanisms. Before releasing the 
sperm nuclei into the embryo sac, pollen tube needs to grow 
through stigma and style, in maize more specifically through the 
silk, which is an elongated stigma. To date, the pollen-pistil 
interaction mechanism is not entirely defined, and the causal genes 
at the bases of the molecular mechanism still unknown. It is not 
clear whether the signal to sustain the fertilisation process comes 
from ovules or pistils, and their actual function in the context of 
incompatibility process remains questioned. Its hypothesised either 
ovules or silks block the pollen tube growth from entering a female 
part, or the pollen has the self-degradation-machinery to interrupt 
the elongation process inside the silks. The intersection part 
between genetics and physiology is essential to reveal the 
incompatibility problems in plants.  

Pollen-pistil interactions depend on the species, and they show 
many variations in terms of morphology and the presence of 
stigmatic exudates. There are two types of stigma: dry and wet, 
which differ by the presence or absence of a wet sticky secretion, 
the exudates. Female flowers with wet stigma surfaces, such as 
Lilium, have indiscriminate adhesion that relies only on liquid 
surface tension (Heslop-Harrison, 1979). In Arabidopsis and 
Brassica, the epidermis consists of large differentiated papillae cells 
which interact directly with the pollen surface. However, in 
Brassica, the impairment of papillae cells inhibit pollen tube 
growth, while Arabidopsis pollen tubes can germinate and grow 
even in nonfunctional stigmas. Selective pollen adhesion provides 
an essential opportunity for species-specificity. 

In contrast, adhesion in a plant with dry stigmas showed 
different behaviours (Lord and Russell, 2002). Once released from 
the anther, the pollen grain contacts with the stigma where it 
adheres, hydrates and germinates. Selective cell-cell adhesion 
mediated by transmembrane proteins defined into four groups: 
selectins, integrins, immunoglobulin, and cadherins. In Arabidopsis, 
adhesion between pollen and stigma occurs within seconds after 
pollination and highly selective (Zinkl et al., 1999). The hydration 
of pollen grains in Arabidopsis is aided by the coat, which 
predominantly contains lipases and oleosins (Mayfield et al., 2001).  

Moreover, the time between pollen capture and germination is 
less than 5 minutes in many grass species (Heslop-Harrison, 1979). 
Germination starts when the pollen grain extrudes a tube from an 
aperture or thin area in the wall. Afterwards, pollen tubes grow up 
to 1 cm/hour and deliver the sperm cells into the embryo sac (Lord 
and Russell, 2002). In general, pollen tube growth is influenced by 
several factors, such as chemotropic agents (Cheung et al., 1995, 
2010), lipids, ions, proteins, and metabolites produced by the pistils 
(Lind et al., 1994; Wolters-Arts et al., 1998; Park et al., 2000; 
Holdaway-Clarke and Hepler, 2003; Palanivelu et al., 2003; 
Sanchez et al., 2004; Hepler et al., 2006). In summary, pollen-pistil 
interactions are an essential part of the selection process to 
eliminate undesirable pollen and to ensure that desirable pollen 
fertilises the female gametophytes. 

Incompatible pollination also associated with the accumulation 
of intermediates of the phenylpropanoid pathway and showed in 
plant response to pathogens and stress (Elleman and Dickinson, 
1999; Lantin et al., 1999; Dubitzky, 2013). In another study, 
pollination and wounding share a common signal transduction 
pathway (Lantin et al., 1999; Kim et al., 2003). Several studies 
addressed the regulation of pollen-pistil interaction, independently 
to incompatibility and several genes involved have been 
characterised. Receptor-like kinases (RLK) were reported to be 
involved in pollen tube growth and pollen-pistil interactions (Kim 
et al., 2003). Kinases, such as those belonging to the CaM-like 
domain protein kinase (CDPK) superfamily, are involved in the 
pollen signalling pathway, regulating pollen tube extension and 
growth polarity (Harmon et al., 1987, 2000; Yoon and Dowd, 2006; 
Escobar-Restrepo et al., 2007). Kinases directly activated by 
calmodulin/calcium (Yang et al., 2004; Thomas et al., 2008). Many 
signalling pathways have been identified during pollen germination 
and pollen tube growth (Bock et al., 2006; Krichevsky et al., 2007). 
Ca2+ (Cytosolic free calcium) is a critical element in the regulation 
of pollen tube growth and guidance. The calcium gradient marked 
by a high concentration at the tip, and a low concentration in the 
sub-apical and basal parts of the pollen tube. Ca2+gradient 
disruption leads to the inhibition of pollen tube growth. Calmodulin 
is a Ca2+ sensor for stimulating pollen tube growth. Pollen tube 
growth was accelerated in styles when exogenous calmodulin was 
injected and inhibited when anti-calmodulin serum was injected 
(Harmon et al., 1987, 2000). Phosphoinositides and phospholipids 
are known to be involved in molecular signalling. D-myoinositol-
1,4,5-trisphosphate (IP3) modulates Ca2+ levels, and 
Phosphatidylinositol-4,5-bisphosphate (PIP2) act in a common 
pathway with Rac GTPases. Both of IP3 and PIP2 can modify the 
pollen tube growth and reorientation of the axis growth (Franklin-

Tong and Franklin, 2003; Malhó et al., 2006; Dresselhaus and 
Franklin-Tong, 2013). GTPases are small GTP-binding proteins 
belonging to the Ras superfamily. In plants, Rho GTPases annotated 
as ROP (Rho-related GTPase from plants) and crucial for pollen tube 
elongation (Zheng and Yang, 2000; Yang, 2002). In maize, ROP2, 
ROP8, and ROP9 highly expressed in mature pollen. A reverse 
genetic approach concluded that ROP2 protein has an essential role 
in male gametophytes function (Arthur et al., 2003). 

Besides, phosphatidic acid and phosphatase protein, also 
known as lipid transport, are involved in lipid metabolism, while 

pyruvate kinase-like protein and putative α-L-arabinofuranosidase 
protein are involved in carbohydrates metabolism during 

pollination (Malhó et al., 2006). The results suggest that many 
genes up-regulated during pollination/fertilisation are also involved 
in defence responses. For examples, LTP (lipid transfer protein), 
thionin, S-like RNase protein precursors, isoflavone reductase-like 
proteins, salt-induced proteins, Pathogenesis-Related (PR) proteins. 
Proteomic approaches revealed that in rice, a PR class 10 protein 
(OsPR-10) which also salt-induced and found in the fungal-rice 
interactions. Arabinogalactan (AGPs) proteins in tobacco (Cheung 
et al., 1995) or γ-aminobutyric acid (GABA) in Arabidopsis are 
localised in pistils and guide the pollen tube to deliver the sperm 
cells into the embryo sac for fertilisation (Lord and Russell, 2002). 
In Arabidopsis, the pollen-pistil interaction 2 (pop2) mutant, is 
impaired in its capacity to grow at in vivo and in vitro when GABA 
is presence. Pop2 encodes a transaminase involved in the 
degradation of GABA (Palanivelu et al., 2003). 

3. Reproductive barrier in plants 

The barrier determining reproductive isolation derives both 
from environmental and genetic factors. The effects of the 
environment are easier to understand, and it is not surprising that 
temperature and humidity play crucial roles. Again different species 
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and different genotypes within the species respond differently to the 
environment, resulting in different overall fitness (Kakani et al., 
2005; Zinn et al., 2010; Snider and Oosterhuis, 2011). In contrast, 
genetic reproductive barrier mainly concerns with incompatibility, 
which is a complex system. There are two kinds of the reproductive 
barrier, those that act before fertilisation (pre-zygotic barrier) and 
those that act after fertilisation (post-zygotic barrier). The pre-
zygotic barrier appears to be somehow more complicated than a 
post-zygotic barrier, due to the complexity of the process behind the 
male-female communications and signalling before fertilisation 
occurs. An example of the pre-zygotic barrier was in Arabidopsis 
where the semi-sterile female gametophytic mutant, the so-called 
Feronia, showed disruption of pollen-pistil interactions: when the 
pollen tube reaches the synergid, the pollen tube tips are not able 
to release the sperm cells (Huck, 2003). 

Moreover, in the maa1 and maa3 Arabidopsis mutants, where 
female gametophytes development delayed, pollen tubes elongate 
in random directions and lost their way to the micropyle (Shimizu 
and Okada, 2000). Differently, although post-zygotic barrier 
prevents the new generation from developing, the fertilised ovule 
can be saved by using in vitro technology. An artificial method, such 
as embryo rescue, microdissection, and tissue culture techniques 
have been developed to overcome the post-zygotic barrier and 
rescue the imminent abortion from oat x maize and Arabidopsis 
(Riera-Lizarazu et al., 1996; Clarke et al., 2006).  

Besides, the fertilisation process does not always succeed. In 
several species, growing in contact with related species, 
mechanisms are at play to avoid inter-specific fertilisation. 
Interspecific incompatibility acts in the pistils, where alien pollen 
grains rejected. Here, two main paradigms exist for explaining 
interspecific cross-incompatibility: incompatibility and incongruity 
(Hogenboom, 1975). Incompatibility happens from the inhibiting 
action of the incompatibility genes and makes the reproductive 
relationship nonfunctional. Differently, incongruity does not act by 
an active rejection of the alien pollen but is primarily a passive 
process in which non-functionality is due to a lack of genetic 
information from one of the partners. For example, the pollen-
carrying a/- alleles cannot pollinate the A/A pistil, in this case, the 
relationship is incongruous. Incongruent between male and female 
exists when there is a specific barrier in gametophyte organs. 
Species that evolved new barrier mechanisms exert selection 
pressure on the male partners to contain new penetrative measures 
and evolve in isolation from one another. Barriers to interspecific 
crosses that are late-acting, those that do not inhibit pollen tube 
growth immediately, are more likely incongruity action as well. 
These mechanisms are common in crop species and overcoming 
them is a prerequisite for utilising wild species germplasms (Heslop-
Harrison, 1979). 

Pollen-pistil interactions control the plant sexual reproduction 
mechanism in angiosperms. To avoid unwanted fertilisation, plants 
build reproductive isolation with self-incompatibility or cross-
incompatibility systems. In general, incompatibility comprises self-
incompatibility (SI) and cross-incompatibility (CI) mechanisms. SI, 
which both mostly act as a pre-zygotic barrier, such as pollen tubes 
growth arrest or pollen tubes failure to penetrate the ovules. A post-
zygotic barrier happens when ovules cannot develop after 
fertilisation, the endosperm growth-arrested, or seeds show reduced 
viability. CI prevents cross-fertilisation between different 
populations within the same species. However, the genetic basis 
behind cross-incompatibility remains questioned, particularly in the 
pre-zygotic barrier. However, considering physiological and 
biochemical aspects, the signatures where the pollen tubes growth 
arrests are clear in CI pre-zygotic barrier. Most pollen tubes never 
reach the base of style, showing severe abnormality in morphology, 
such as twisted tubes. Also, heavy callose deposition at the tip of 
pollen tubes growth is typical cellular signature during the CI 

process. Currently, the genetic and molecular basis behind the SI 
system well studied in the past decade (Franklin-Tong and Franklin, 
2003; Chantha et al., 2013; Miao et al., 2013; Li and Chetelat, 
2014). In contrast, the CI system remains questioned (Demerec, 
1929; Kermicle, 1950, 2006; Kermicle and Evans, 2005; Kermicle 
et al., 2006; Lu et al., 2014). 

4. Incompatibility in plants 

Self-incompatibility (SI) is common in plants and 30 out of 227 
taxa show self-incompatibility (Igic and Kohn, 2006). SI is a 
genetically controlled process that results in the recognition and 
rejection of self, self-related pollen, and pollen tubes (De 
Nettancourt, 1997). In SI, pollen can reach the stigma of the same 
plant or another plant with the same incompatible allele, but pollen 
germination, pollen tube growth, fertilisation, or embryo 
development are blocked.  

Based on the type of plant family (McCubbin and Kao, 2000), 
there are three models for SI events, such as Solanaceae, 
Papaveraceae, and Brassicaceae. In Solanaceae, S-haplotype 
specificity becomes the main player in SI response, while in 
Papaveraceae, S-gene controls female function during SI. In the case 
of Brassicaceae, SLG, SRK, SCR/SP11 control the S-haplotype 
specificity. 

In the SI system, there are two mechanisms involved in the 
incompatibility event. In sporophytic self-incompatibility (SSI), the 
pollen tube growth unable to penetrate the stigmatic surface and 
the compatibility determined by the S-haplotypes of the diploid 
sporophyte acting as the pollen parent. 

In contrast, the gametophytic system of incompatibility (GSI) 
prevents pollen tube growth inside the style, which leads to pollen 
tube burst and the compatibility determined by the haploid 
genotype of the male gametophytes. Pollen rejected when its S-
locus matches the S-alleles in the diploid pistils (Kumar and 
McClure, 2010). The molecular aspects of both SSI and GSI studied 
in several plant species (Franklin-Tong and Franklin, 2003; Kao and 
Tsukamoto, 2004). For example, a style-specific receptor-like kinase 
(SRK) involved in the recognition process of the Brassica SI system 
(Stein et al., 1991). In general, the pistil organ contains genes of 
mate selection that control gene flow during pollination (Bedinger 
et al., 2017).  

Cross-incompatibility is one type of reproductive barrier that 
restricts gene flow between divergent populations within the same 
species. There are two types of CI mechanisms, the first occurs 
before fertilisation (pre-zygotic barrier) and the second mechanism 
takes place after fertilisation (post-zygotic barrier) when the 
development of the young embryo is stopping (Matsubara et al., 
2003). Gametophyte factors (Ga), the presence of which has been 
reported in many species such as maize (Nelson, 1952, 1996; 
Jiménez and Nelson, 1965), lima bean (Allard, 1963), barley 
(Tabata, 1961), rice (Iwata, 1964), and tomato (Rick, 1971), are 
critical genetic factors shown to be involved in cross-
incompatibility. The phenomenon of cross-incompatibility mainly 
studied in maize, because of its relevance in the production of 
hybrids. In fact, in maize, several different Ga loci and other loci 
have been identified among which the best characterised are 
Gametophyte factors1 (Ga1), Gametophyte factor2 (Ga2), and 
Teosinte crossing barrier-1 (Tcb1) (Figure 1). All systems based on 
the presence of different alleles, whose interplay determines seed 
set failure and therefore classified as CI. The Ga1 locus mainly 
studied because of the discovery of a dominant allele, named Ga1-
s, which determines complete CI in female homozygous Ga1-s/Ga1-
s when pollinated by ga1 pollen. CI based on Ga1 was used in 
popcorn varieties to prevent pollination by nearby dent corn 
(Nelson, 1996). Ga2 identified from maize genetic stocks based on 
transmission ratio distortion (Kermicle and Evans, 2010). 
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Similarly, Teosinte crossing barrier1 (Tcb1) was identified in 
wild teosinte populations and prevented seed set from tcb1 pollen, 
while allowing fertilisation by pollen carrying Tcb1. The study of CI 
in Ga1 and Tcb1 led to the hypothesis that the crossing barriers 
based on incongruity instead of active rejection (Kermicle and 
Evans, 2005). This hypothesis, therefore, invokes the incongruity 
model and not an S-locus system of active rejection for CI in maize. 
However, the crosses between different CI systems are not 
equivalent because the crosses between Ga2 is not equivalent to Ga1 
or Tcb1 system and vice versa because they do not have the 
identical genes (Evans and Kermicle, 2001; Kermicle and Evans, 
2010). 

The different growth responses of the pollen tube in Ga1, Ga2, 
and Tcb1 during CI were characterised (Lu et al., 2014). In the Ga1-
s system, pollen tubes showed misdirection of growth and intense, 
uneven callose deposition. In the Ga2-s system, a third defect was 
observed, with the majority of the pollen tubes showing a twisted 
callose plugin lateral positions. In the Tcb1-s system, pollen tubes 
had stronger callose staining, suggesting a thicker callose layer on 
the cell wall, but the pollen tube morphology was normal. In 
summary, the CI systems in maize suggest different biochemical 
pathways and indicate different mechanisms of the arrest of pollen 
tube growth. 

The unilateral cross-incompatibility (UCI) system of 
Gametophyte factors1 (Ga1) is probably the best studied in maize 
(Kermicle and Evans, 2010). The CI prevent sexual transmission of 
sperm cells by arresting pollen tube growth and therefore, it is an 
example of a pre-zygotic barrier (Dresselhaus et al., 2011). Briefly, 
in the Ga1 locus, three allelic variants were discovered: 
Gametophyte factor1-strong (Ga1-s), Gametophyte factor1-male 
(Ga1-m), and ga1 alleles (Jiménez and Nelson, 1965). Specifically, 
the Ga1-s allele provides pollen grains with the characteristics of 
being universal pollinators, with the capacity to accomplish 
fertilisation independently on the allele(s) present in the female, 
whereas plants homozygous for the ga1 allele (recessive) are unable 
to fertilise homozygous Ga1-s plants (Figure 1). In this system, 
females carrying Ga1-s in the homozygous state are selective 
against ga1 pollen. On the contrary, females carrying the ga1 allele 
at the homozygous state are universal acceptors, since a complete 
seed set is accomplished independently on the Ga1 allele carried by 
the pollen. In heterozygous plant (Ga1-s/ga1 or ga1/Ga1-s) pollen 
carrying the Ga1-s allele shows a competitive advantage over ga1 
pollen (Schwartz, 1950). Differently, Ga1-m behaves both as a 
universal pollen recipient and also as a universal pollinator (Nelson, 
1952; House and Nelson, 1958). Uniquely, the way to distinguish 
between genotypes comes from crossing approach because of no 
significant biological appearance within genotypes. In addition to 
Ga1 and Ga2, other gametophyte factors loci have been described 
and loosely mapped in maize. Ga loci have been reported on 
chromosome 1 (Ga4 and Ga6), 3 (Ga7), 5 (Ga2 and Ga10), 7 (Ga3) 
and 9 (Ga8) (Longley, 1961; Wang et al., 2012). The Ga1 locus 
firstly mapped on chromosome 4, based on the observation of 
segregating distortion of the linked locus sugary1, in crosses 
between sweet (ga1/ga1 su1/su1) and popcorn (Ga1-s/Ga1-s 
Su1/Su1) maize (Mangelsdorf and Jones, 1926). Ga1-s alleles have 
been widely studied in the incompatibility systems in maize to 
identify the crossing barrier between the different alleles and used 
for improvement for a breeding program in many crops. 

Many popcorn inbred lines carrying the Ga1-s alleles can 
fertilise dent and flint maize lines (ga1). However, the reciprocal 
crosses are unsuccessful. The Ga1 trait can be used in the future as 
a reproductive barrier among different maize lines to prevent the 
maize plants from unwanted pollination, such as Genetic Modified 
(GM) plants (Scott et al., 2019). 

 

5. Fine mapping of Ga1 locus 

Classical genetic mapping allowed to place Ga1 on the genetic 
linkage map on chromosome 4 in loose linkage with su1 
(Mangelsdorf and Jones, 1926). More recently (Woriedh et al., 
2013; Lu et al., 2019; Ma et al., 2019), the position of Ga1 refined 
using molecular markers. Ga1 gene was found to have homology 
with a gene coding for a pectinesterase (Pectin  

Methylesterase/PME). This observation reinforces the 
hypothesis of this being Ga1 because in the literature PME was 
shown to be involved in pollen tube growth in other species, such 
as Arabidopsis, tobacco (Nicotiana tabacum), and lily (Lilium) 
(Bosch and Hepler, 2005; Bosch et al., 2005; Tian et al., 2006).  

The genomic localisation of Ga1 locus improved by combining 
the results coming from different experiments. One experiment 
refers to the analysis of segregation distortion and the identification 
of a quantitative trait locus (QTL) based on B73xHP301 
recombinant-inbred lines (RIL) (Bloom and Holland, 2012). Ga1 
locus was shown to overlap to a 2.2 Mbp interval on chromosome 
4, based on the maize B73 RefGen_v2 reference, containing 13 
predicted genes and many genes of unknown homology (Bloom and 
Holland, 2012). Also, based on BC1F1 populations, created from 
SDGa25 popcorn lines, and by using map-based cloning, the Ga1 
locus was positioned between the SD3 and SD12 markers 
identifying, spanning approximately 2 Mbp on the maize B73 
RefGen_v2 reference (Zhang et al., 2012). Liu et al. (2014) used a 
Chinese popcorn inbred line carrying either Ga1-s or the Ga1-m 
alleles (Liu, Unpublished data), the ones used to mapped Ga1 
between markers SD3 and SD12 in previous work (Zhang et al., 
2012). The authors identified a physical distance of about 2 Mbp 
based on the B73 RefGen_v2 sequence (Schnable et al., 2009). As 
for Ga1-s, the locus was mapped in a 100 kb region between 
markers dCS1 and ID7, identifying three candidate genes 
GRMZM2G027021, AC204382.3_FG010, and GRMZM2G039983. 
The Ga1-m region was fine mapped using these newly developed 
markers based between SNP markers 13-4 and 25-5. The physical 
distance was about 246 Kbp based, resulting in three candidate 
genes GRMZM2G419836, GRMZM2G027021 and 
GRMZM2G039983, two of which the same as for Ga1-s (Liu et al., 
2014). GRMZM2G419836's product is a member of the thioredoxin 
superfamily. GRMZM2G027021 is a GTP-binding protein involved 
in pollen tube growth. GRMZM2G039983 has homology with WDL1 
of Arabidopsis, which is a microtubule-associated protein. All three 
genes might be involved in pollen-pistil interactions. In order to 
isolate the Ga1-m gene, an SDG25 BAC library was constructed and 
screened. The primers used in screening the BAC library were 
primers for the fine mapping. The positive recombinant BAC clones 
covering the whole mapping interval were identified and 
sequenced. However, this candidate gene was obtained based on the 
sequence derived from B73, which carries only the ga1 allele. In 
another study (Emery, 2015), six predicted genes and two 
transposable elements absent in Ga1-m haplotype but found in B73 
(ga1) genotype.  

From the above, it is clear why the characterisation of both 
pectinesterase/PMEs is of great interest to the unravelling of the 
Ga1-mediated CI phenomenon (Woriedh et al., 2013; Lu et al., 
2019; Ma et al., 2019). PMEs belong to a large and highly 
evolutionary conserved gene family, and the corresponding 
enzymes produced on bacteria, fungi and plants (Markovic and 
Janecek, 2004; Pelloux et al., 2007). In plants, pectinesterases are 
involved in both vegetative and reproductive phases, such as root, 
fruit, and pollen development (Wen et al., 1999; Tian et al., 2006). 
In Arabidopsis (Bosch and Hepler, 2005; Tian et al., 2006), PME 
was shown to be involved in pollen tube growth and was expressed 
in female gametophytes in maize (Wakeley et al., 1998; Woriedh et 
al., 2013; Lauter et al., 2017; Lu et al., 2019; Ma et al., 2019).  
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Moreover, PME expressed as a stress-specific response gene. 
Several defence responses induced after recognition of biotic or 
abiotic stresses via various signal transduction mechanisms and 
PMEs translocated to the plant cell wall, where they de-
methylesterify homogalacturonan (HGA, here pectin). PME is pH-

sensitive and modulated by medium alkalinization, as responses in 
some plant-pathogen interactions or by acidification, as a result of 
increases in levels of H30+, a secondary product of PME activity 
(Pelloux et al., 2007).

 
 

 

 

Fig. 1. Illustration of Cross-incompatibility Mechanism in Maize. The ga1 allele as a recessive allele cannot pollinate the Ga1-s allele 
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6. Recent reports on Ga1-related CI 

Li et al. (2014) performed transcriptomics studies in maize 
pistils of an inbred line carrying the Ga1-s allele by using Digital 
Gene Expression-tag profiling. The study showed 1,378 
differentially expressed genes (DEGs) of which 737 up-regulated, 
and 641 down-regulated when comparing maize Ga125 line (Ga1-

s/Ga1-s) + W22 line (ga1♂) and W22 (ga1/ga1♀) + Ga25 (Ga1-

s♂). DEGs classified in the catabolic process, translations, 
carbohydrate metabolic, and structural molecule activity and 
significantly enriched during pollination at 5 hours after pollination 
(HAP). Based on this study, it is suggested that the inhibition of the 
remodelling structure of the transmitting tract and the pollen tube 
tip is the Ga1-s style way to prevent ga1 pollen from reaching the 
ovules (Li et al., 2014). 

Moreover, a similar study based on proteomics of Ga1 in maize 
near-isogenic line (NIL) of W22 carrying either the Ga1-s or the ga1 
allele found that the proteins involved in hydrolase activity, nucleic 
acid binding and nucleotide-binding (Yu et al., 2014). The 
identified proteins are related to stress-specific responses as well as 
plant defence responses, suggesting the activation of plant defence 
mechanisms during Ga1-mediated CI. By using functional 
classification of fragments expressed, about 31% contains genes 
encoding of unknown proteins, 21% stress-response factors related, 
and 20% are genes which involved in RNA processing, modification, 
translational, ribosomal structure, and biogenesis. In summary, 
defence-related genes, such as genes coding for ATP binding 
proteins, heat shock proteins, and proteins with chaperone activity, 
are activated during plant-pathogen interactions as well as in 
response to both compatible and incompatible pollination. In 
another study, Huffman (2017) found that Ga1-s pollen expressing 
fewer proteins and haplotype-specific proteins than ga1 and 24 
proteins also in concordance with Yu et al. (2014), but only five of 
them showed identical expression patterns. 

In QTL study using Recombinant Inbred Lines (RILs) from 
(B73xKy21) and (B73xM162w) carried by Shrestha (2016), Ga1-s 
behave differently on rejecting the ga1 pollen with a combination 
of B73 allele but not for Ky21 allele, while with the latter RILs 
populations, Ga1-s showed the effectivity of ga1 pollen rejection. 
Another study in W22 populations carrying Ga1-s and ga1 allele 
(Lauter et al., 2017), ZmPME3 was identified as a silk-specific gene 
which lacks in ga1 genotypes. In Ga2-s case from two genotypes 
(Wang et al., 2018), 511L (Ga2-s) and B73 (ga2) lines showed the 
consistent result with other studies that reveal pollen tube 
elongation disorder during pollination. Also, PME genes were 
differentially expressed between two genotypes both in silks and 
pollen.  

Revilla et al. (2018) showed that Ga1-s allele could protect 
another allele (sh2 - shrunken2) from pollen contamination on 
sweet corn populations (EP2013-09, EP2013-11, EP2013-12, 
EP2013-13, EP2013-18). However, the agronomic performance of 
hybrids needs to be improved. Hurst et al. (2019) described the 
GWAS research on popcorn populations carrying Ga1-s and ga1 
alleles. As a result, some SNPs and genes associated with PME and 
Calcium-binding proteins (GRMZM2G157241) found in Ga1 locus 
on chromosome 4 in B73 RefGenV3. In another study about Tcb1 in 
W22 and B73 backcrossing populations (Lu et al., 2019), a pistil-
expressed PME homolog gene which is a probable female barrier 
gene (Tcb1-female). These findings found quite similar results that 
PME genes could be a key factor during the pollination.  

7. Conclusion 

The molecular mechanism controlling pollen-pistil interactions 
is a crucial phase of sexual plant reproduction with critical 
outcomes in terms of plant fitness in general, and plant success as 

a crop, since most of the crop products are the direct or indirect 
results of successful sexual reproduction. In this scenario, mutants 
affecting pollen-pistil interaction are not only of interest per se but 
may play a fundamental role as genetic tools to produce knowledge 
and models of action. The cross-incompatibility phenomenon in 
maize and the genes controlling it has all these features, and a better 
understanding of it might have a significant impact on plant 
scientist to comprehend and control both successful fertilisation and 
incompatible ones. Here, we described the summary of researches 
regarding Ga1 locus in maize and showed that many studies related 
to cross incompatibility are in a similar agreement, which there are 
a probable pistil or pollen barrier genes that control and become a 
selective pressure from one population to another in maize 
populations. To date, the exploration of PME genes in maize 
populations carrying Ga1 locus become more attractive due to 
similar findings on Ga1 research in maize.   
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